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3.6

An Approach to Consensus and
Certainty with Increasing Evidence

MARK J. SCHERVISH AND
TEDDY SEIDENFELD

ABSTRACT

We investigate conditions under which conditional probability distributions
approach each other and approach certainty as available data increase. Our
purpose is to enhance Savage’s (1954) results, in defense of “personalism”, about
the degree to which consensus and certainty follow from shared evidence. For
problems of consensus, we apply a theorem of Blackwell and Dubins (1962),
regarding pairs of distributions, to compact sets of distributions and to cases of

static coherence without dynamic coherence. We indicate how the topology

under which the set of distributions is compact plays an important part in deter-
mining the extent to which consensus can be achieved. In our discussion of the
approach to certainty, we give an elementary proof of the Lebesgue density
theorem using a result of Halmos (1950).

I. INTRODUCTION

In his classic discussion of Bayesian inference, L. J. Savage (1954, Sec-
tions 3.6 and 4.6) illustrates how (finitely many) different investigators
come to agree on the truth of one hypothesis, given an increasing
sequence of shared observations. More precisely, Savage’s result is this.
Assume the following two conditions.

Reprinted from Journal of Statistical Planning and Inference, Volume 25, M. Schervish
and T. Seidenfeld, “An Approach to Consensus and Certainty with Increasing Evi-
dence,” pp. 401-414, Copyright 1990, with kind permission from Elsevier Science —
NL, Sara Burgerhartstraat 25, 1055 KV Amsterdam, The Netherlands.
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1. The agents’ initial opinions over a (finite) set of rival hypotheses are
not too discrepant — there is agreement on which hypotheses have
probability 0.

2. There is agreement also on the (distinct) likelihoods for these
hypotheses over an infinite sequence of observations which are
identically, independently distributed given an hypothesis.

Then, almost surely, the sequence of conditional probabilities for the
hypotheses converge (given more of these data) to a common, 0-1 dis-
tribution focused on the true hypothesis.

Savage offers this finding as a partial rebuttal to the charge that his
Bayesian theory of personal probability is overly “subjective” — that it
cannot explain how scientific methods may be a source of “objective”
knowledge. In short, he uses this result to explain how interpersonal
agreements about what is practically certain can arise within the
Bayesian paradigm. The object of our discussion here is to indicate how
the two parts to Savage’s conclusion — consensus and certainty of opin-
ions — obtain (asymptotically) under more general conditions than are
permitted by (1) and (2). That is, we indicate how Savage’s reply may
be enhanced.

The first part of Savage’s conclusion, (almost certain) consensus for
a pair of agents, does not depend upon the assumptions (2) so long as
the hypotheses of interest are expressible in terms of (perhaps infinite)
sets of observables, as was shown by Blackwell and Dubins (1962).
(Also, like Blackwell and Dubins, we avoid Savage’s restriction to con-
ditional probability given non-null events but, instead, we require that
probabilities are countably additive, unlike in Savage’s argument.) We
discuss how compactness of a set C of (mutually, absolutely continu-
ous) probabilities affects the kind of consensus that may be achieved
with increasing shared evidence. When the extreme points of C are
compact in the discrete topology, consensus (“almost everywhere”)
follows from the theorem of Blackwell and Dubins: Corollary 1. When
the extreme points of C are compact in the uniform-distance topology,
convergence (“in-probability”, but not “almost everywhere”) of
sequences of pairs of probabilities is proven: Corollaries 2, 3, and
Example 3. And when the extreme points of C are weak-star compact,
no consensus is assured at all: Example 2.

The second part of Savage’s conclusion, that the conditional proba-
bilities of a measurable event E converge (almost surely) to 1 or 0 as
E occurs or fails to occur, follows from coherence alone. We offer two
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arguments for the approach to certainty. One proof (which we suspect
is known to many) is as a consequence of Doob’s martingale conver-
gence theorem. The other argument uses just a basic result governing
the exteiision of o-finite measures from an algebra to its smallest o-
algebra. (A similar result is needed, also, in the application of Doob’s
martingale theorem.) We show how the approach to certainty for con-
ditional probabilities provides an elementary proof of the Lebesgue
density theorem: Corollary 6. Example 4 illustrates the importance of
the measurability assumption for certainty, even with exchangeable
probability distributions.

In addition, we show that consensus and certainty, viewed as claims
about the asymptotic behavior of the agents’ unconditional probabili-
ties with increasing data, do not require the full force of temporal con-
ditionalization — they do not require the use of Bayes’ theorem to
revise degrees of belief.! That is, though we do require (static) coher-
ence, we do not assume that, over time, an agent updates his personal
probability by conditionalization. We do not impose a constraint of
(full) dynamic coherence. For consensus, it suffices that the agents use
conditional probabilities arbitrarily chosen from a class C enveloped
by finitely many (mutually absolutely continuous) distributions. Under
the conditions of Corollary 1, asymptotic certainty follows from static
coherence: Corollary 4.

II. THE STRUCTURAL ASSUMPTIONS FOR THE: SPACE
(X, B, P)

IL1. The Measurable Space (X, B)

Consider a denumerable sequence of sets X; (i=1, . . .) with associated
o-fields B. Form the infinite Cartesian product X = X, x...of
sequences (xi, xp,...) = x € X, where x; € X, that is, where each x; is
an atom of its algebra B,. (This is mild as the B; may be unrelated.)
In the usual fashion, let the measurable sets in X (the events) be the
elements of the o-algebra B generated by the set of measurable
rectangles. (A measurable rectangle A = A; x . . . is one where A4, e B:
and A; = X; for all but finitely many i.) Thus, (X, B) is a measurable
space. '

Define the spaces of histories (H,, H,) and futures (F,, F.) where
H,=X,X...xX,, H,=B,x...x B, and where F, X X,., X...and
Fn = Bua X. ... Identify these as sub-c-fields of (X, B) by writing
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G.e H,as G,x X, % ...and E, e Feas Xy X...x X, x E,.We shall
be concerned, in particular, with the (increasing) sequence of histories
h. € H, and the (decreasing) sequence of future events E.e T, as
these are judged given each history.

I1.2. The Probability P

Let P be a (countably additive) probability over the measurable space
(X, B). Assume P is predictive (Blackwell and Dubins, 1962), so that
there exist conditional probability distributions of events given past
events, P"(-1#,).% In particular, given a history 4, there is a conditional
probability distribution for the future, P*(-|h,) on F,.

Next, we show that conditional probability given some history,
P*(-h,) on B, is characterized by the conditional probability for the
future, P*(-|h,) on F,. We observe that when P(BI") is defined as the
Radon-Nikodym derivative of P(- n B) with respect to P(:), then if D
N E=0:(i) P(D v EIC) = P(DIC) + P(EIC) [a.e. P] and (if) P(DIE) =
0 [a.e. P]. Thus, for all A € B and for almost all x,

P"(A|h,)= P (AN h,|h,) +P"(ANk;|h,) by(i)
and =P"(Anh,|h,) by (i).
However, A N h, can be written as (X1, ..., %) X E,, where E, € F.,as

desired. This elementary result will be helpful in our discussion (in
Section 1v) of convergence to certainty.

III. CONSENSUS' THROUGH MARTINGALES

Consider any probability Q which is in agreement with P about events
of measure O in B,i.e,VE ¢ B, P(E) =0iff Q(E) =0, so that P and o
are mutually absolutely continuous. Then Q, too, is predictive with con-
ditional probability distributions Q"( F,lA,). In their important paper of
1962, Blackwell and Dubins establish (almost sure) asymptotic con-
sensus between the conditional probabilities P* and Q" In particular,
they show:

Theorem 1. For each P" there is a Q" so that, almost surely, the distance

between them vanishes with increasing histories:

lim p(P*,Q")— 0 [a.e.PorQ],
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where p is the uniform distance metric berween distributions. That is,
with | and v defined on the same measure space (M, M), p(u, V) is the
Lub., over evenis E € M, of (E) — V(E)I.

(Blackwell and Dubins prove this result about consensus by a
“slightly generalized” martingale convergence theorem - their
Theorem 2 (1962, p. 883).)

What can be said about consensus when considering a set C of mutu-
ally absolutely continuous probabilities? Quite obviously, unless C is
closed, there may be no consensus among conditional probabilities. In
this vein, we note a simple corollary to Theorem 1.

Corollary 1. Ler C be a closed, convex set of probabilities all mutually
absolutely continuous, and generated by finitely many of its extreme
points. Denote this finite set by C={P,, . .., Py}. Then, asymptotically,
the conditional probabilities in C achieve consensus uniformly. That is,
for almost all x e X,Ve>0,3m,Vn > m, VP, Qe C, p(P", Q") < &.

Proof. Because Cis finite, by Theorem 1, for almost all x e X,
Ve >0,3m,Vn>m, Fg})g)(cp(P,f', Ph<e.
Recall that if p(T, U) < ¢, then p(T, §) < e and p(S, U) < ¢ for
each convex combination S = aT + (1 - @)U, 0 < o < 1. Recall also
that
VPeC,Vh,, 30, ..., a, (a; 20, =1
P'(lh) =X @Pr(|h,), i=1,....k.

The corollary is immediate from these two observations, O

Note also that the corollary ensures consensus when agents are
merely statistically coherent but take their updated probabilities from
those in C.
Example 1. Let x; be the ii.d. Normal (4, ), where the conjugate
priors for these parameters have hyperparameters which lie in a

compact set. Given the observed history, &, let two agents choose prob-
abilities P", Q" (given h,) in any manner (even as a function of 4,,) from
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this set. Then, consensus obtains, almost surely, with observation of
the xi’S.

The next result, which has a weaker conclusion, is true and helps to
identify the role played by the topology in fixing closure of C.

Corollary 2. Let C be a compact set (under the topology induced by
p) of mutually absolutely continuous, predictive probabilities on the
space (X, B). Let {P,, Q,} be any sequence of pairs from C. Then,
VR e C,

p(Pr, 0250 asn— .
That is,
Ve >0,lim R({h,: p(P},Q2) >€}) = 0.

Proof. The result follows from the claim: p(P% R") —&> 0 as n — o,
That is,

" Ve>0,limR({h,: p(P7,R") >€}) = 0.

[The claim suffices for the corollary, since Vh,, p(Py, OF) < p(Pz, RYy +
P(R", On).] We demonstrate the claim using Blackwell-Dubins’
theorem, Theorem 1, and a simple lemma.

Lemma. For any predictive probabilities S and T,
if p(S,T) < ap,thenVn, S({h,: p(S", T") >a}) < B.

The proof of the lemma is straightforward and is omitted.

Proof (of the claim). We argue indirectly. Suppose there is a subse-
quence, denoted by {n}, where 36> 0, Vn,, R({h,: p(P%, R™) > €}) > 6.
C is compact. So it is sequentially compact and every sequence con-
tains a convergent subsequence. Hence, {P,} contains a p-convergent
subsequence, which we denote by {P,,,]_} where Vj, Ji P,,,j =P,,and P1is
its uniform limit, which we denote by P,,,/ ~p— Pe C.Thus, Vk >0,
3i, Vj > i, p(P,,,,, P) < £6/4k. Then, by the lemma,

3, Vn,Vj >i, P({h,,: o(Py,. P")> %}) <8/2k.
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Since both P and R belong to the set C, by the Blackwell-Dubins
theorem (going from “a. e.” to “in probability” convergence),

Im,Vn>m, P({h,‘: p(P*,R") > %e}) <8/2k.

Let m’ = max(m, m;). Then, Vn > m’ and Vm; > m’, P({h,: p(Pr, R*) >
€}) < &k. Hence,

Ve >0, lim (Vn > m’ Vim, > m")P({h: p(P}, , R") >€}) = 0.

That is, p(P;,, R*) >0 as the pair (m;, n) — . Because R is (finite
and) absolutely continuous with respect to P, then p(Pr, R*) &> 0 as
the pair (m;, n) — oo. This contradicts the supposition, V#; R({h,: p(Pr,
R™) > ¢g}) > 6, and proves the claim. [

However, Corollary 2 is not true when compactness of C is under
the weak-star topology.® This is shown by a counterexample.

Example 2. Let X; = {0, 1} so that (X, B) is the measurable space
of (Borel sets) of infinite flips of a coin. Let R be the exchangeable
probability on X given by the beta mixing prior a = =1, the uniform
distribution over the binomial parameter 6, for the deFinetti repre-
sentation of R as a mixture of i.i.d. Binomial distributions.

Consider the set G, of histories of length » for which the observed
relative frequency of 1’s is less than or equal to 1. Let S, be the
exchangeable probability on X with beta mixing prior « = 6n, = .
Define probability P, as follows: -

P.)=[o(|h)dR(h,),

where

Sa(lh) ifh, €G,,

R"(|h,) if h,eG;.

Then the sequence P, converges weak-star to R, since each P, agrees
with R on all rectangles in H, (> ,,, m < n). (This follows by Halmos’s
Theorem 13.A, which we discuss in connection with Theorem 2, below.)
Therefore, the set W= {R, P, (n =1, ...)} is (weak-star) closed and
every sequence in W contains a (weak-star) convergent subsequence.

4(1h) ={
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So W is compact in the weak-star topology.* The elements of W are
mutually absolutely continuous. (Use the Radon-Nikodym theory with
the definition of P, and the mutual absolute continuity of the §, with
R.) However, Vh, € G,, p(P, R") >+. This is because Vh, € G, Pi(xn
=11h,) (= Si(x.n = 11h,)) 23 while R*(x,,,1h,) <. Moreover, for each
n, R(G,) 2.

Note also that, given G,, the difference |P;(-) — R*(-)! fails to con-
verge to 0, even pointwise, over events in (X, B). Let E be the event
that the limiting relative frequency of “1” exceeds 2. Then,

o " gl 1

Last, observe that no superset of the P, can be compact in the topol-
ogy induced by p as p(P,, R) 3.

The corollary can be strengthed to say:

Corollary 3. Let the set C be as in Corollary 2. Then for all R in C,

Ve >0, lim sup R({h.:p(P",Q")>€})=0.

n=e poeC

Proof. We argue indirectly. Suppose de > 0 with
liminf sup R({h.: p(P",Q") >€}) =6 >0.
n—oe poeC
Equivalently, Vi, 3n,, > m, 3(P,, Q) € C such that

R({h: p(Prr, Qi) > €}) = 8.

Without loss of generality, assume n,, > n,,;. Form two new sequences
of pairs of elements of C, as follows. Let A, =P, when n=n,, and A4,
= R otherwise. Likewise, let B, = Q,, when n = n,, and B, = R other-
wise. Apply Corollary 2 to the sequence of pairs (A,, B,). We have,
Ye> 0,

lim R({h.: p(A}, B) >€})=0,
which contradicts the supposition,

VmR({h: p(Aze, Qo) >€}) = 5. O]
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Corollaries 2 and 3 guarantee convergence (in probability) for each
sequence of pairs-of probabilities chosen from the set C. These two
results do not ensure the “in probability” convergence of conditional
probabilities taken from C, analogous to the “almost everywhere” con-
vergence of Corollary 1. The next example shows that compactness of
C (under the uniform topology) is insufficient for “in probability” con-
vergence of the conditional probabilities in C. Hence, trivially, p-
compactness of C does not suffice for the “almost everywhere” con-
vergence, which obtains according to the first corollary when C is gen-
erated by finitely many extreme points.

Example 3. Let (X, B) an’d R be as in Example 2. Define the (integer-
valued) function n*(m) (m = 2), recursively, as follows:
n*(2)=1,n*m)=n*m-1)+ :%(m+ 1)]] form=3,...,
where [r] is the integer part of r. For k=0, .. ., [3m], define
Apun = {h,, =(X1, .0, Xn): (l/n)(ix,-)— klm
P

<1/2m+1.001loglog n*(m)/Zn*(m)]W;

n=n*(m),...,n*(m+1)—1}

and define m*(n) to be that integer m such that n*(m) <n <n*(m + 1).
Next, define the probability

Qinn = [ $(| P )AR(R,),
where

Sg(lh'n) ifhn€14k.m.m
R"('Ih’n) lfhn GAk,m.n-

(This is analogous to the definition of P, in Example 2). Since R(A )
= Qumn(Armyz) — 0 uniformly in k£ and n as m — <, any sequence of
probabilities of the form P, = Oy, for m = m*(n) and k € {0,...,
[3m]}, will converge to R uniformly as 7 — .

By the law of the iterated logarithm for the binomial probability P,
(0<e<1),

¢<-1hn>={
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> 6(1- 6)(1.001)[2 loglog n/n]"*

()

infinitely oftenin n}) =Q.

For all n and all 6 <4,
{h,,: (1/n)<§x,-)—9
c{h,,: (l/n)(ixi)—G

il
form= m*(n)}

< 6(1- 6)(1.00D)2loglog /] 2}

< 1.001{loglog n*(m)/2n* (m)]"”,

c {h,,: (l/n)(i x,-) ~ k/m|<1/2m +1.001loglog n*(m)/2n*(m)]"*,

=

for [k/m—-0|<12m .

Now choose P, as follows. Let P, = Qi for m = m*(n)and k=n —
n*(m) = k*(n). From this it follows (by the law of the iterated loga-
rithm) that, for all 6 <3, Po({Ays(smrn). infinitely often in n}) = 1. Then,
we have that R({Axx(n)mn» infinitely often in n}) 2 1. Let E be the event
that the limiting frequency of “1” is at most 0.65. For n > 600, and for
all histories h, € Ay | PA(E) — RY(E)1 2 0.9. Hence,

{hn: Arymnn o infinitely often} < {h,: p(PZ, R") - 0},

and it follows that R({%,: p(P;, R") — 0}) < 1.

Next, select a sequence of probabilities, {P.4}, where the n-th term
in the sequence depends on the history 4, as follows. If (1/n)(Z%, x;) <
3, let Py, = Qrmyn, Where k is chosen so that I(1/n)22, x;) — k/m*(n)|
< 122m*(n). Otherwise, if (1/n)(Z%; x;) >1, let P,, = R.The set C of R
together with all the P,, (the Q. for k=0, ..., [Em*(n)]) is
compact (in the uniform topology), since every subsequence converges
uniformly to R, and the elements of C are mutually absolutely contin-
uous. But, for n 2 600, R({h.: p(Pys,, R”) > 0.9}) 21, Thus,

lim _)LnfR({h,,: supp(P", R") > 0.9}) 0,

Therefore,
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sup p(P*,0")-» 0 (inprobability), (*)
PQeC

in marked contrast with Corollary 3.

Last, note that the set C’ consisting just of R and the P, is p-compact
and contains mutually absolutely continuous elements. It is easy to see
(in effect by Corollary 3) that

sup p(P*, Q") —2-0. G
PQPeC

Thus, “in probability” consensus of the form (**) does not entail
“almost everywhere” consensus of the form p(P;, R") — 0 [a.c. R].

IV. THE ALMOST CERTAIN APPROACH TO CERTAINTY FOR
EVENTS MEASURABLE WITH RESPECT TO X, B

Though Blackwell and Dubins do not make mention of it, another con-
sequence of Doob’s martingale convergence theorem (Doob, 1953,
Theorem 7.4.1, p. 319) is the desired result about the approach to cer-
tainty in these conditional probabilities. Denote the characteristic func-
tionof aset Eby ye(x) =1if x e E and yz(x) =0ifx ¢ E,forxe X
a complete history. '

Theorem 2. VE € B, lim,...P"(Elh,) = x(x) [a.e. P].

Theorem 2 asserts that, for each event E and for all but a set of com-

plete histories of P-measure 0 (depending upon E), the sequence of
conditional probabilities, P"(Elh,), converges to 1 or to 0 as E occurs
or not.
Proof. Theorem 2 is a substitution instance of Doob’s Theorem 7.4.3
(p- 331) which reads (in relevant parts) as follows: Let z be a random
variable with finite absolute expectation, E{izl} <« and let G, c G,
... be Borel (o-)fields of measurable sets. Let G.. be the smallest Borel
(o-)field of sets with U, G, C G... Then, lim,_..E{z|G,} = E{ZIG.} [a.c.].
Theorem 2 obtains by taking z = yz, G, = H,, and G.= B. [

Doob’s Theorem 7.4.3 is proven with Theorem 7.4.1 (his martingale
convergence theorem) and a familiar measure-theoretic result (in
effect, Theorem 13.A of Halmos, 1950, p- 54), which asserts that a o-
finite measure y on an algebra A induces a unique o-finite extension
of u on the smallest o-algebra containing A, 6[A].° It is our purpose,
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next, to show that Theorem 2 can be derived from a measure-theoretic
result (Halmos, Theorem 13.D, p. 56), related to the extension Theorem
13.A, without appeal to martingale theory. But first we state without
proof a simple consequence of Theorem 2 and Corollary 1.

Corollary 4. Let the set C be as in Corollary 1. If f(h,) € {P"(Elh,):
P e C}, then the sequence of conditional probabilities, f(h,), converges
to xe(x) [a.e. Pe C}.

Thus, when the set C is as in Corollary 1, static coherence suffices
for asymptotic certainty.

Besides the Theorem 13.A, which ensures the unique extension of
the measure u from A to o[ A}, also there is an important result about
approximation (in measure) of elements of o[ A] by elements of A.
This is reported by Halmos (1950, p. 56).

Theorem 13.D. If 11 is a o-finite measure on a ring R, then for every set
E of finite measure in o[R) and for every £> 0, there is a set E, € R with
MWE A Ey) < e (A is symmetric difference).

Theorem 2 can be derived from this directly (as noted by Halmos,
Theorem 49.B, p. 213), without supposing P is predictive.®

The technique used in the alternative proof establishes the approach
to certainty for the extension of (X, B, P) to its measure completion.

Corollary 5. Ler (X, B, P) be the measure completion of (X, B, P).
Then

VE e B,lim P"(Elh,) = x:(x) [a.e.P]
Also, Theorem 2 provides an elementary proof of the Lebesgue
density theorem (see Lebesgue, 1904, and Oxtoby, 1971, pp. 16-18),
which we give as a corollary. Let u be Lebesgue measure. For each

measurable set E on the real line R, define the density at the point
x by:

;imy(E A[x—h,x+h])/2h,

and denote by ¢(E) the set of points at which E has density 1.
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Corollary 6. The one-dimensional Lebesgue density theorem: For each
measurable set E ¢ Ry u(E A ¢(E)) = 0.

Proof. Use Corollary 5 and the fact that the unit interval [0,1]is Borel
equivalent to 2% (See Royden, 1968, p. 268.)

V. CONCLUSIONS

Theorem 2 asserts that, with increasing evidence, conditional proba-
bilities for an event E approach certainty, almost surely. We alert the
reader to the requirement that E € B, so that asymptotic certainty
about a parameter 1 depends upon the measurability of .

Example 4a. Let x; be binary, X; = {0, 1}, with probability P(x; = 1=
p. Consider the infinite sequence X = (x;, x,, x,, .. .) generated by
repeating the outcome x;. This is (trivially) an exchangeable sequence.
By deFinetti’s representation theorem, the probability P on X is given
as a mixture of i.i.d. Binomial distributions with some “prior” (mixing)
probability distribution z(6) over the binomial parameter 6. However,
## 6. On the contrary, P is represented by the “prior” mixture (8=
0) = (1 - ), 7(6=1) = u and, obviously, observations tells us about
only, not about the parameter (= x) which is not measurable in the o-
field (X, B).

Example 4b. A less obvious version of this problem is as follows. Let
x; form an exchangeable sequence where, for each integer k, Xijy + + o5 X,
have the Multivariate Normal distribution N, = (1, ), with ' =
[4, ..., 1] and with X equal to the k x k matrix having main diagonal
elements all 2’s and off-diagonal entries all 1’s. Then  fails to be mea-
surable with respect to the o-field (X, B). Repeated observations of the
x; do not make the posterior probability concentrate about u. Rather,
the asymptotic posterior distribution of u from these data, with limit-
ing sample average = £ is identical to the posterior one would obtain
(using the same prior over y) from a sample of two, independent
Normal(u, 2) observations with sample average £

Against the background of Theorem 2, we report conditions which
guarantee asymptotic consensus (under the uniform distance metric)
for conditional probabilities taken from a set C of unconditional dis-
tributions. Not surprisingly, depending upon how C is closed, different
conclusions obtain.
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When C is (contained within or) generated by finitely many (mutu-
ally absolutely continuous) elements, i.e., when C is convex and its
extreme points form a compact set in the discrete topology, consensus
of conditional probabilities occurs, almost surely. When the extreme
points of C form a compact set in the uniform topology, there is “in
probability” (but not “almost sure”) consensus for sequences of pairs
of conditional probabilities. When C is compact in the weak-star topol-
ogy, there may be no limiting consensus. In this case, there can even be
an event E and a sequence of pairs (P, Q,) from C where the (paired)
conditional probabilities of E differ by a fixed amount, |P}(E) ~ QX E)|
>6>0.

Of course, these “large sample” results fail to provide bounds on the
rates with which consensus and certainty occur. What they do show,
however, is the surprising fact that these asymptotic properties of con-
ditional probabilities do not depend upon exchangeability or other
kinds of symmetries of the (unconditional) probabilities in C. Rather,
agreement on events of zero probability and a suitable closure suffice
for consensus, while “the approach to certainty” is automatic.

NOTES

1 A careful discussion of static and dynamic coherence is given by Levi (1980,
Chapter 4). Simply stated, static coherence requires that an agent have (con-
ditional) degrees of beliefs captured by a (conditional) probability which
respects the total evidence principle. Let Pi(--) be one such (static) represen-
tation, with background knowledge K. If the agent learns some new evidence
E, so that K’ (the closure under implication of K with E) is the new knowl-
edge, then temporal conditionalization requires identifying the updated
(static) representation Py.(--) with the conditional probability P,(-}-, E). Hence,
temporal conditionalization provides a dynamic constraint.

Savage’s analysis (§3.6 of 1954) is ambiguous between the static and
dynamic reading of the convergence in conditional probabilities. The ambigu-
ity persists even in his subsequent essay, “Implications of Personal Probability
for Induction” (1967), though we think he appears inclined there to endorse
temporal conditionalization. M. Goldstein concentrates on this distinction in
his “Exchangeable Belief Structures” (1986) and other essays of his cited
therein. Besides Levi’s clear presentation, different philosophic perspectives
on the question of static vs. dynamic coherence include: Kyburg’s “Condition-
alization™ (1980), van Fraassen’s “Belief and the Will” (1984), and additional
references given therein.

2 Predictive probabilities are those which admit regular conditional distributions
in the sense of Breiman (1968, p. 77). Without regularity of conditional distri-
butions, all that can be shown about the existence of conditional probabilities
follows from the Radon-Nikodym theorem. In Section Iv we point out that,
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for event E, the convergence to certainty of the conditional probabilities,
P*(Elh,), does not require that P be predictive. We alert the reader to minor
variations in the definitions of “predictive”, as found in Breiman (1968, p. 77),
Doob (1953, p. 26), and Halmos (1950, pp. 209-210). See, in particular, Doob’s
discussion (1953, p. 624).

Last, we note that the sufficient condition for P being predictive, as given
by Breiman (1968, Theorem 4.34, p. 79), is also sufficient for extending a set
function y given “marginally” as a probability on n-dimensional sets of a ring
R (that is, for each #, y is given as a probability on n-dimensional rectangles),
to a coherent probability on o[R], its infinite dimensional o-ring, as shown by
Halmos (1950, T.A, p. 212).

3 Diaconis and Freedman (1986, appendix) discuss “weak-star merging” of pos-
terior probabilities in a setting with i.i.d. data. Their interesting Theorem A.1
(1986, p. 18) equates such “merging” of opinions with their rather strict notion
of “consistency” of postetior probabilities.

4 Theorem 1.6.13, p. 21 of Dunford and Schwartz (1958) asserts that, in a metric
space, a closed and sequentially compact set is compact. For discussion of the
metrizability of the weak-star topology see Dudley (1968, §1). Those results
on the metrizability of the weak-star topology apply to our probabilities on
(X, B) since the unit interval [0, 1], a separable metric space, is Borel equiva-
lent to 2% (Royden, 1968, p. 268).

5 This note offers some details about how Doob’s Theorem 7.4.3 is demon-
strated in order to emphasize the role of the extension Theorem 13.A. Define
Y bY ¥» = E{)p(x)|h,). Then the random variables y,, y,, . . . constitute a mar-
tingale. That is, as required for a martingale: (a) E{ly,|} (= P(E)) < 0, and (b)
E{yuilys, . .., Yo} = E[Yunilya} = e

The latter is a special case of Doob’s Example 1 (1953, p. 92), with 1 = y;,
and &, = x,, since h, = (x1,. .., X,). .

By Doob’s Theorem 7.4.1(i), lim,...y, = w exists (almost surely). But by
7.4.1(ii), w behaves exactly like the conditional probability P(E|x) (which is-
the Radon-Nikodym integrand representation of P(E N -} over B) for all ele-
ments of the field U, H,. That is, Y, VA € H,,

[ wap = [ yndP(n,)= | P(E|x)dP = P(En A).

By the extension Theorem 13.A, a measure on B is uniquely determined by
its values on the field U, #,. Therefore, w = P(Elx) = xe(x), almost surely, as
was to be shown.

6 Halmos proves Theorem 49.B by showing “almost uniform convergence”.
Actually, his argument stops short of that. The proof is completed by a
familiar comstruction relating to Egoroff's theorem, e.g., Exercise 30 of
Royden (1968, p. 72).
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3.7

Reasoning to a Foregone Conclusion

JOSEPH B. KADANE, MARK J. SCHERVISH,
AND TEDDY SEIDENFELD

ABSTRACT

When can a Bayesian select an hypothesis H and design an experiment (or a
sequence of experiments) to make certain that, given the experimental
outcome(s), the posterior probability of H will be greater than its prior proba-
bility? In this chapter we discuss an elementary result that establishes sufficient
conditions under which this reasoning to a foregone conclusion cannot occur. We
illustrate how when the sufficient conditions fail, because probability is finitely
but not countably additive, it may be that a Bayesian can design an experiment
to lead his/her posterior probability into a foregone conclusion. The problem has
a decision theoretic version in which a Bayesian might rationally pay not to see
the outcome of certain cost-free experiments, which we discuss from several per-
spectives. Also, we relate this issue in Bayesian hypothesis testing to various con-
cerns about “optional stopping.”

I. INTRODUCTION

In alively (1962) discussion of some foundational issues, several noted
statisticians, especially L. J. Savage, focused on the controversy of
whether an experimenter’s stopping rule is relevant to the analysis of
his or her experimental data. Savage wrote (1962, p. 18):

The [iikelihood] principle has important implications in connection with
optional stopping. Suppose the experimenter admitted that he had seen 6 red-
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